Aaron Reinhard joined the Kenyon faculty in 2017. His research is in the field of laser cooling and trapping, or using lasers to collect atoms and lower their temperature to a few millionths of a degree above absolute zero. These samples give researchers exquisite control over the quantum states of atoms and have enabled exciting new technologies. The Reinhard lab focuses on the interactions among ultracold, highly excited Rydberg atoms. Their research will help pave the way for a neutral atom quantum computer, or a computer where each “0” or “1” is encoded in the state of an atom, and which operates according to the strange rules of quantum mechanics.
Professor Reinhard works with multiple students in his lab each year. His work is funded by the National Science Foundation.
Areas of Expertise
Rydberg atoms, laser cooling, optics
Education
2008 — Doctor of Philosophy from University of Michigan
2003 — Bachelor of Science from Valparaiso University
2003 — Bachelor of Electrical Engineering from Valparaiso University
Courses Recently Taught
For many centuries, both scientists and artists have pondered the myriad compositions of light, including rainbows, shadows, colors and mirages. While the beauty of these phenomena is fascinating, it is also rewarding to grapple with the underlying theory that explains them. In this course, students explore how light can be modelled as a ray, wave or particle, and use these ideas to explain concepts such as reflection, refraction, scattering, diffraction and absorption. Several in-class laboratory exercises strengthen the conceptual understanding of light. Throughout the course, the focus is to explain various phenomena, ranging from fiber-optic technology to pointillism. A final project, which synthesizes the conceptual understanding of light, is required, and students are encouraged to follow their interests, through various forms, in order to fulfill it. While the course has some mathematical content -- simple algebra and geometry -- it is open to any student and does not count toward the physics major. No prerequisite.
This course is the second in a one-year introductory physics sequence. Topics include wave phenomena, geometrical and physical optics, elementary quantum theory, atomic physics, X-rays, radioactivity, nuclear physics and thermodynamics. When possible, examples relate to life science contexts. The course combines lectures, in-class exercises, homework assignments and examinations. Knowledge of calculus is not required. This course does not count toward the physics major. Prerequisite: PHYS 130 and concurrent enrollment in PHYS 136. Offered every spring.
This laboratory course meets one afternoon each week and is organized around weekly experiments that explore the phenomena of waves phenomena, geometrical and physical optics, elementary quantum theory, atomic physics, X-rays, radioactivity, nuclear physics and thermodynamics. Lectures cover the theory and instrumentation required to understand each experiment. Students continue to develop skills in computer-assisted graphical and statistical analysis of data as well as the analysis of experimental uncertainty. This course does not count toward the physics major. Prerequisite: PHYS 131 and concurrent enrollment in PHYS 135. Offered every spring.
This lecture course is the first in a three-semester, calculus-based introduction to physics (PHYS 140, 145 and 240). Topics include the kinematics and dynamics of particles and solid objects; work and energy; linear and angular momentum; and gravitational, electrostatic and magnetic forces. PHYS 140 is recommended for students who might major in physics and is appropriate for students majoring in other sciences and mathematics, particularly those who are considering careers in engineering. The course combines lectures, in-class exercises, homework assignments and examinations. This course is required for the physics major. Prerequisite: concurrent enrollment or credit for MATH 111, or equivalent, and concurrent enrollment in PHYS 141 (first-year students) or PHYS 131 (sophomore students). Open only to first-year and sophomore students. Offered every fall.
This seminar explores a significant current topic in physics that challenges first-year students. The topic varies from year to year. In the past, the seminar has explored such topics such nanoscience, astrophysics, particle physics, biological physics and gravitation. In addition to introducing the fundamental physics connected with these topics, the course exposes students to recent developments, as the topics are often closely related to the research area of faculty teaching the seminar. The seminar meets one evening a week for lectures, discussions, laboratory experiments and computer exercises. This course fulfills the concurrent laboratory requirement of PHYS 140 and serves as solid preparation for PHYS 146. It is required for the physics major. Prerequisite: first-year students who are concurrently enrolled in or have placed out of PHYS 140. Offered every fall.
The course begins with a discussion of the wave nature of light. The remainder is concerned with the study of electromagnetic waves and their interactions with lenses, apertures of various configurations and matter. Topics include the properties of waves, reflection, refraction, interference, and Fraunhofer and Fresnel diffraction, along with Fourier optics and coherence theory. This counts toward the theoretical elective for the major. Prerequisite: PHYS 350. Offered every other spring.
This course extends the formalism of quantum mechanics and applies it to a variety of physical systems. Topics covered may include atomic and molecular spectra, nuclear structure and reactions, NMR, scattering, perturbation theory, quantum optics, open-system dynamics and quantum entanglement. This counts toward the theoretical elective for the major. Prerequisite: PHYS 360. Offered every other spring.
This introduction to thermodynamics and statistical mechanics focuses on how microscopic physical processes give rise to macroscopic phenomena; that is, how, when averaged, the dynamics of atoms and molecules can explain the large-scale behavior of solids, liquids and gases. We extend the concept of conservation of energy to include thermal energy (heat) and develop the concept of entropy for use in determining equilibrium states. We then apply these concepts to a wide variety of physical systems, from steam engines to superfluids. This counts toward the theoretical elective for the major. Prerequisite: PHYS 245 and MATH 213. Offered every other fall.
This course builds upon the foundation developed in PHYS 240 and 241 for measuring and analyzing electrical signals in DC and AC circuits, introducing students to many of the tools and techniques of modern electronics. Familiarity with this array of practical tools prepares students for engaging in undergraduate research opportunities as well as laboratory work in graduate school or industry settings. Students learn to use oscilloscopes, meters, LabVIEW and various other tools to design and characterize simple analog and digital electronic circuits. The project-based approach used in this and associated courses (PHYS 381 and 382) fosters independence and creativity. The hands-on nature of the labs and projects helps students build practical experimental skills including schematic and data-sheet reading; soldering; interfacing circuits with measurement or control instruments; and troubleshooting problems with components, wiring and measurement devices. In each electronics course, students practice documenting work thoroughly, by tracking work in lab notebooks with written records, diagrams, schematics, data tables, graphs and program listings. Students also engage in directed analysis of the theoretical operation of components and circuits through lab notebook explanations, worksheets and occasional problem sets. Students may be asked to research and present to the class a related application of the principles learned during investigations. This course is required as part of the 1.00 unit of upper-level experimental physics coursework to complete the major in physics. Prerequisite: PHYS 240. Offered every fall and runs only the first half of the semester.
In this course, students explore circuit design and analysis for active and passive analog circuit elements, from the physics of the components (semiconductor diodes, transistors) to the behavior of multi-stage circuits. Experiments explore transistors, amplifiers, amplifier design and frequency sensitive feedback networks. This counts toward the experimental elective for the major. Prerequisite: PHYS 380 (may be taken in the same semester). Offered in alternate years and runs only the second half of the fall semester.
This course is an introduction to upper-level experimental physics that prepares students for work in original research in physics and for work in industry applications of physics. Students acquire skills in experimental design, observation, material preparation and handling, and equipment calibration and operation. Experiments are selected to introduce students to concepts, techniques and equipment useful in understanding physical phenomena across a wide range of physics subdisciplines, with the twofold goal of providing a broad overview of several branches of experimental physics and preparing students to undertake any experiments in PHYS 386 and 387. This course is required as part of the 1 unit of upper-level experimental physics coursework to complete the major in physics. Prerequisite: PHYS 241, 245 and 380. Offered every spring and runs only the first half of the semester.
In this course, students explore fundamental physical interactions between light and matter, such as Compton scattering, Rayleigh and Mie scattering, and matter-antimatter annihilation, while also learning to use common nuclear and optical detection and analysis techniques. This counts toward the experimental elective for the major. Prerequisite: PHYS 385 (may be taken in the same semester). Offered in alternate years and runs only the second half of the spring semester.
In this course, students probe the structure of solids using X-ray crystallography and atomic force microscopy, study the physical properties of semiconductors, and use the manipulation of magnetic fields to examine the resonant absorption of energy in atoms and nuclei. This counts toward the experimental elective for the major. Prerequisite: PHYS 385 (may be taken in the same semester). Offered in alternate years and runs only the second half of the spring semester.
Section 01 (0.25 units): In this course, students conduct research, synthesize and share experiences, attend professional presentations in the department, and present their research orally and in writing. Students complete three to four hours of independent research per week under the supervision of a faculty member and participate in discussion sections and other commitments as designed by the instructor. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.\n\nSection 02 (0.5 units): This section carries the same requirements as Section 01, except that the time commitment is six to eight hours of individual research per week under the supervision of a faculty member, in addition to participation in other commitments as designed by the instructor. This section represents a significant commitment to a research project. Enrollment requires consultation with the department chair. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.