Joan Slonczewski publishes research with undergraduates on bacterial pH stress, funded by the National Science Foundation. She also studies cold-adapted microbes from Antarctica. She authors science fiction novels, including The Highest Frontier and A Door into Ocean, both of which earned the John W. Campbell Memorial Award. She teaches courses on microbiology, virology and biology in science fiction.

Visit her professional website.

Education

1982 — Doctor of Philosophy from Yale University

1977 — Bachelor of Arts from Bryn Mawr College

Courses Recently Taught

How is information generated, transmitted, stored and maintained in biological systems? The endeavor to understand the flow of biological information represents a fundamental undertaking of the life sciences. This course examines the mechanisms of heredity, the replication and expression of genetic information and the function of genes in the process of evolution, with an emphasis on the tools of genetics and molecular biology to address research questions in these areas. This course is required for the major and, as such, biology majors should take this class prior to the junior year. Prerequisite: BIOL 115, permission of instructor or equivalent. Offered every year.

Students volunteer weekly at Knox Community Hospital, College Township Fire Department or another designated health provider. We study health research topics including articles from biomedical journals. The academic portion of the class meets as a three-hour seminar. Students read and critique articles on topics such as diabetes in the community, pain-killers and drug addiction, AIDS and STIs, influenza transmission, and socioeconomic status and health disparities. Outside of class, students have four hours a week of reading, and a minimum of four hours a week of service. Students' assignments include keeping a journal on their service and class presentations related to the reading and their service. This counts toward the upper-level organismal biology/physiology requirement for the major. Prerequisite: one year of biology or chemistry and permission of instructor.

Microbes inhabit the most extreme environments on Earth, ranging from superheated sulfur vents on the ocean floor to alkaline soda lakes. In medicine, newly discovered bacteria and viruses cause a surprising range of diseases, including heart disease; they may even hold the key to human aging. Yet other species live symbiotically with us, keeping us healthy, and even regulate our brain. Still other microbes, such as nitrogen fixers, are essential to the entire biosphere. This course covers microbial cell structure and metabolism, genetics, nutrition and microbial communities in ecosystems, and the role of microbes in human health and disease. This can count toward the upper-level lecture in organismal biology/physiology or cellular/molecular requirements for the major. Prerequisite: BIOL 116.

In this course, students learn the classic techniques of studying bacteria, protists and viruses in medical science and ecology, and practice microbial culture and examine life cycles, cell structure and metabolism and genetics. High-throughput methods of analysis are performed, such as use of the microplate UV-VIS spectrophotometer and whole-genome sequencing. For the final project, each student surveys the microbial community of a particular habitat, using DNA analysis and biochemical methods to identify microbial isolates. This counts toward the upper-level laboratory requirement. Prerequisite: BIOL 109Y-110Y or a chemistry lab course and completion or concurrent enrollment in BIOL 238.

In this course, students examine the form and function of viruses through current research papers and documentaries on viral disease. Specific viruses are examined in depth, exemplifying their roles in human and animal health, biotechnology and global ecology. Topics may include human papillomavirus, a DNA virus causing cancer; hepatitis C virus, a growing cause of liver failure; Ebola virus, an RNA virus with extraordinary virulence; influenza virus, an RNA virus of humans and animals with pandemic potential; and human immunodeficiency virus (HIV), the cause of AIDS. We investigate the use of HIV-derived viral vectors for gene therapy. This counts toward the upper-level cellular/molecular biology requirement for the major. Prerequisite: BIOL 238, 243, 263, 266 or 358. Generally offered every other year.

This combined discussion and laboratory course aims to develop abilities for asking sound research questions, designing reasonable scientific approaches to answer such questions, and performing experiments to test both the design and the question. We consider how to assess difficulties and limitations in experimental strategies due to design, equipment, organism selected and so on. The course provides a detailed understanding of selected modern research equipment. Students select their own research problems in consultation with one or more biology faculty members. This course is designed both for those who plan to undertake honors research in their senior year and for those who are not pursuing honors but want practical research experience. A student can begin the course in either semester. If a year of credit is earned, it may be applied toward one laboratory requirement for the major in biology. This course is repeatable for credit. Prerequisite: BIOL 109Y–110Y and 116 and permission of instructor.

This course offers an in-depth research experience. Prior to enrollment in this course, students are expected to complete at least one semester of BIOL 385 and participate in the Summer Science Scholars program. Two semesters of BIOL 385 are recommended. Emphasis is on completion of the research project. Students also are instructed in poster production and produce one or more posters of their honors work for presentation at Kenyon and possibly at outside meetings. There are oral progress reports, and students draft the introduction and methods section of the honors thesis. The letter grade is determined by the instructor and project advisor in consultation with the department. Students must have an overall GPA of at least 3.33 and a GPA of 3.33 in biology. Permission of instructor and department chair required. Prerequisite: BIOL 385 and permission of project advisor and department chair.